reading-note

https://eng-ehabsaleh.github.io/reading-note/

View on GitHub

What is Big O notation

Big O notation is a mathematical notation that describes the limiting behavior of a function when the argument tends towards a particular value or infinity. Big O is a member of a family of notations invented by Paul Bachmann, Edmund Landau, and others, collectively called Bachmann–Landau notation or asymptotic notation.

Big O notation characterizes functions according to their growth rates: different functions with the same growth rate may be represented using the same O notation. The letter O is used because the growth rate of a function is also referred to as the order of the function. A description of a function in terms of big O notation usually only provides an upper bound on the growth rate of the function.

What is Linked Lists

In computer science, a linked list is a linear collection of data elements whose order is not given by their physical placement in memory. Instead, each element points to the next. It is a data structure consisting of a collection of nodes which together represent a sequence. In its most basic form, each node contains: data, and a reference (in other words, a link) to the next node in the sequence. This structure allows for efficient insertion or removal of elements from any position in the sequence during iteration. More complex variants add additional links, allowing more efficient insertion or removal of nodes at arbitrary positions. A drawback of linked lists is that access time is linear (and difficult to pipeline). Faster access, such as random access, is not feasible. Arrays have better cache locality compared to linked lists

The principal benefit of a linked list over a conventional array is that the list elements can be easily inserted or removed without reallocation or reorganization of the entire structure because the data items need not be stored contiguously in memory or on disk, while restructuring an array at run-time is a much more expensive operation. Linked lists allow insertion and removal of nodes at any point in the list, and allow doing so with a constant number of operations by keeping the link previous to the link being added or removed in memory during list traversal.On the other hand, since simple linked lists by themselves do not allow random access to the data or any form of efficient indexing, many basic operations—such as obtaining the last node of the list, finding a node that contains a given datum, or locating the place where a new node should be inserted—may require iterating through most or all of the list elements.