reading-note

https://eng-ehabsaleh.github.io/reading-note/

View on GitHub

Linear Regressions

In statistics, linear regression is a linear approach for modelling the relationship between a scalar response and one or more explanatory variables (also known as dependent and independent variables). The case of one explanatory variable is called simple linear regression; for more than one, the process is called multiple linear regression. This term is distinct from multivariate linear regression, where multiple correlated dependent variables are predicted, rather than a single scalar variable.

Notes

Linear regression was the first type of regression analysis to be studied rigorously, and to be used extensively in practical applications.This is because models which depend linearly on their unknown parameters are easier to fit than models which are non-linearly related to their parameters and because the statistical properties of the resulting estimators are easier to determine.

Linear regression has many practical uses. Most applications fall into one of the following two broad categories:

linear

Scikit-learn is a powerful Python module for machine learning. It contains function for regression, classification, clustering, model selection and dimensionality reduction. Today, I will explore the sklearn.linear_model module which contains “methods intended for regression in which the target value is expected to be a linear combination of the input variables”.

some method in Scikit-learn

scikit-learn